How to concretely access industrial sectors with microalgae production based on industrial ecology concept

Dr Jean-Michel POMMET,
Senior Manager Products & Business Development

ECO innovations from biomass 2015 – 17-18th of June, Papenburg, Germany

ALGOSOURCE, France
Who are we?

Our Expertises

- Heat
- Water/Nutrients
- Light
- CO2

Nutraceuticals
Food / Feed
Active ingredients
Cosmetics
Personal care & Pharma

www.algosource.com
Who are we?

Technical innovation & Diversity in production tools

www.algosource.com
Our approach

Industrial ecology

with Microalgae
Why thinking industrial ecology?

Microalgae and market access

Maximum biomass cost (€/kg) and minimum quantities (tonnes) to enter the corresponding markets.

Cost of intrants in heterotrophy

Existing opportunities <-> The future to Shape
We are deeply engaged in a circular economy/sustainable development vision with our microalgae

4 concrete axis:

• CO\(_2\) capture
• Bio-asphalt
• Methanation
• Smart cities...
Autotrophy (or mixotrophy) and joint-economy required a network of industrial activity interconnected.
Capture of CO₂ and production of microalgae with the flue gas produced by a cement plant

Gargenville plant, France

Challenge / opportunity =>

CO₂: coproduct of the cement industry
(≈ 700 kg CO₂ / t of cement) no valorization !!
CO₂

Artificial light

- Plastic tubes airlift photobioreactors
- Flat panel airlift photobioreactor

Sunlight

- This pilot is composed of two identical tubular photobioreactors in order to compare the productivity. The first photobioreactor is supplied with pure CO₂ and the second with flue gas. Artificial light is used as energy source and the temperature of the system is 25°C with a pH of 7.5.
- This PBR is flat, it has a rectangular shape with a thickness of 1.5 cm. The culture conditions are similar than the other photobioreactor, except the use sunlight as energy source. A pH sensor with a pH meter is used to measure the pH. A luminometer is used to measure the quantity of sunlight in order to make a dose model.

Diagram pH control and supply of carbon dioxide

The regulation of pH is a very important parameter to maintain a optimum pH. During the photoautotrophic growth, cells take up the dissolved CO₂ and the pH increases. When the pH is above the setpoint value (it's 7.5 for our experiment), the flue gas or the pure CO₂ are injected into the photobioreactor. When the pH is below the setpoint value, the injection is stopped.

Growth with flue gas or pure CO₂

- Microalgae can grow with the flue gas
- The growth between the culture with pure CO₂ is almost identical to the culture with flue gas

Outlook

- **Industrial applications of microalgae**
 - **Short-term**
 - Nutrition
 - Cosmetic & Health
 - **Mid- and long-term**
 - Environment
 - Energy
 - **Human**
 - *Antioxidant*
 - *Carotenoids*
 - *Fatty acids*
 - *Omega 3 & 6*
 - **Animal**
 - *Biofuel*
 - *Biogas*

CTG Italcementi Group
Methanation

Study on industrials’ effluents capture and their valorization with microalgae production

Revenue 1

Biomass’ P° + bonus energy
Revenue 2 + 3
Smart cities

Issues: climate change, ecological footprint of the city, global food challenge, end of resources and fossil energy

Solution: associate microalgae cultures to the building

Why: it exists a complementarity between microalgae cultures and building functioning

- CO₂ capture from boilers
- treatment of local effluents
- valorization of fatal heat and building heat loss
- production of algae biomass for the health, cosmetic and food sectors
- renewable energy

Urban algae culture serving Sustainable City
Smart cities

Prototype demonstrator on the roofs of the University in Saint-Nazaire => First result of interest:

- Reducing the use of air conditioning
- Development of algal models with extraction of high added-value molecules

Issues: climate change, ecological footprint of the city, global food challenge, end of resources and fossil energy

Solution: associate microalgae cultures to the building

Why: it exists a complementarity between microalgae cultures and building functioning

- CO₂ capture from boilers
- Treatment of local effluents
- Valorization of fatal heat and building heat loss
- Production of algae biomass for the health, cosmetic and food sectors
- Renewable energy
Microalgae biomass value

- Essential amino acids pattern similar to food
- Polysaccharides (starch, glucose, sugars)
- Pigments (chlorophyll, carotenoids - β-carotene and astaxanthin - phycobiliproteins)
- Essential vitamins (A, B1, B2, B6, B12, C, E, nicotinate, biotin, folic acid and panthothenic acid)
- Lipids
- Carbohydrates
- Other compounds
- PUFAs (ARA, EPA, DHA)
Our methodology

Step 1: Identification of the value (market study)

Step 2: Topological analysis

Step 3: Conceptual process and flow sheet design

Step 4: Economic pre-validation

Step 5: Experimental validation

Step 6: Techno-economic analysis
Spirulina biorefinery

- **Exo metabolites** → **Product 1**
- **Fresh Biomass**
 - **Aqueous extraction** → **Spirulysat** (Product 2)
 - **Lipidic extraction** → **Product 3**
 - **Additional treatment** → **Product 4**
- **Final residue**

Example: Lipidic extraction, Aqueous extraction, Exo metabolites
Example of market development

Spirulina extract valorization

Blooo tonic, the spiruline-based tonic water!

Beverages, Functional drink etc.
bio-asphalt

Spirulina residue valorization

Hydrothermal liquefaction as a route to transform microalgae residues in bio-asphalt
Results
- Feasibility is shown
- A process has been identified
 • Viscoelastic properties can be tuned
- A Patent has been filed

Outlook:
- To work on durability
- To optimize the process
 • Understand more deeply HL
- Collaboration with industry
Simulation study to predict the plant size and evaluate its rentability
Microalgae: culture in greenhouses

Example of Spirulina production plant after realization of a simulation study on the basis of the effluent available to define the appropriate size...

...and after training people to microalgae culture and quality management.

Easy to build + low price + low biomass output overcomes by the rooftop / greenhouse and the waste recycling (heat, CO2...) process.
AlgoSource provides tools for any stage of your project: from lab scale study to mass production.
R&D tools

The biggest R&D facility in Europe to run industrial programs
R&D tools

www.algosolis.com
We are here
Saint-Nazaire, France

Our green team
Thank you for your attention

TO CONTACT US:

Dr. Jean-Michel POMMET
Senior Manager, Business Development

Mobile: +33 676 365 958
E-mail: jean-michel.pommet@algosource.com

“Microalgae at the heart of your future projects”