

Landwirtschaft leidet unter dem Klimawandel

- o andauernde Dürreperioden
- o extreme Niederschlagsereignisse
- Umverteilung der Niederschlagsereignisse auf Wintermonate

Humusaufbau

- höheres Wasserspeichervermögen
- bessere Pufferfunktion (Nährstoffe können "gehalten" werden)
- höhere Gefügestabilität
- höhere biologische Aktivität

Humuszertifikate – Was steckt dahinter?

- Humusaufbau = Negativ-Emissionen = C-Senke
- Ein Prozent Humus pro Hektar bindet ca. 50 Tonnen CO2 (und 1,25 Tonnen Stickstoff)

Humuszertifikate – Kosten und Nutzen

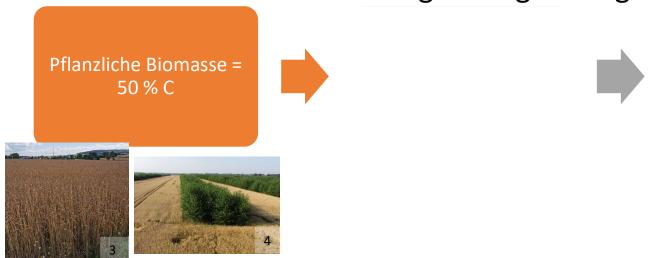
fiktives Beispiel:

Weidehof baut auf 72 ha 0,1 % pro Jahr Humus auf.

Kosten - Nutzen	pro ha	gesamte Fläche
CO2-Bindung pro Jahr	4 t	288,2 t
zusätzlicher DB/a bei Auszahlungspreis von 30€/t CO2	120€	8.640 €
zusätzlicher DB über Laufzeit von 10 Jahren	12.000€	86.400€

honoriert den Humusaufbau

Marketing-Vorteil:


"...wir helfen dem Weidehof ihre Böden fruchtbar zu halten, damit sie weiterhin Getreide für unser Brot anbauen können."

Humuszertifikate – Unsicherheiten

4

Alternative: Pflanzenkohlezertifizierung

- Pflanzenkohle = pyrolisierte pflanzliche Biomasse
- Kann bis zu tausende Jahre im Boden stabil bleiben(Zimmerman, 2013)
- Führt im Boden zum Humusaufbau(Blanco-Canqui, 2019)
- 10-15 Prozent höhere Pflanzenerträge(Wild, 2013; eigene Erfahrungen)
- 13 % höherer Methanertrag in Biogasanlage(Rödger et al, 2014)

Alternative: Pflanzenkohlezertifizierung Kosten und Nutzen

Beispiel Weidehof: Pflanzenkohlezukauf und -anwendung bei Weizen

	€/ha
Deckungsbeitrag ohne Pflanzenkohle	351,14
Kosten Pflanzenkohle (200 kg/ha = 4kg/m3 Rindergülle)	140
Zertifizierung Pflanzenkohle	20
Deckungsbeitrag mit Pflanzenkohle (und 10% Mehrertrag)	366,14
Gewinn durch Anwendung von Pflanzenkohle	15


Alternative: Pflanzenkohleerzeugung, -zertifizierung und -anwendung

Kosten und Erlöse pro Jahr	Beschreibung	Preis / Erlös
Abschreibung der Anlage	Auf 10 Jahre	200.000 €
Zins und Tilgung	2 % ohne Tilgungsstruktur	40.000 €
Materialeinsatz	50€/t bei 2.200 Tonnen	110.000 €
Personalkosten	2 Akh	190.000 €
Betriebskosten	100 €/Tag	31.200 €
Ausbringungskosten	3600 ha x 10 €	36.000 €
Gesamtaufwendung	7500 Betriebsstunden	552.200 €

Wirtschaftlicher durch Maßnahmen der Regenerativen Landwirtschaft?

Beispiel Weidehof:

Lucas Kohl, 14.11.2020 www.humuvation.de

Eckhardt & Platzdasch GbR

Intensiver Ökologischer Landbau – Regenerativer Ökologischer Landbau – Regenerativer Ökologischer Landbau

Literatur

- Blanco-Canqui H., Laird D. A., Heaton E.A., Rathke S., Acharya B. S.: Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. DOI: 10.1111/gcbb.12665
- Rödger J.-M., Ganagin W., Krieg A., Roth C., Loewen A.: Steigerung des Biogasertrages durch die Zugabe von Pflanzenkohle. Müll und Abfall 9. S. 467-481
- Wild, J. 2013: Düngung mit unterschiedlich behandelten Güllegaben und Mykorrhiza Einsatz, im ökologischen Anbau. Meisterarbeitsprojekt. Landhut-Schönbrunn
- Zimmerman AR, Gao B. 2013: The Stability of Biochar in the Environment. In: Ladygina N and Rineau F (eds) Biochar and Soil Biota. Boca Raton, 1–40

Bildquellen

- 1. Bellarby et al. angepasst von Bautze & Gattinger (2018)
- 2. Eigene Erstellung
- 3. Eigene Erstellung
- 4. https://www.ernaehrungswandel.org/informieren/artikel/detail/aufwerten-agroforst-als-gesellschaftliche-aufgabe, Zugriff 31.08.2020
- 5. https://www.biomassehof.de/produkt/pflanzenkohle-hackschnitzel-big-bag/, Zugriff 31.08.2020
- 6. Eigene Erstellung
- 7. https://ct-schuster.de/neue-seite, Zugriff 01.09.2020